a2 United States Patent

Sohoni et al.

US009445117B2

US 9,445,117 B2
Sep. 13, 2016

(10) Patent No.:
45) Date of Patent:

(54) ERROR TRACKING AND MITIGATION FOR
MOTION COMPENSATION-BASED VIDEO
COMPRESSION

(71) Applicant: Imagination Technologies Limited,
Kings Langley (GB)

(72) Inventors: Sudhanshu Sohoni, Maharashtra (IN);
Parag Salasakar, Maharashtra (IN);
Robert Graham Isherwood,
Buckingham (GB)

(73) Assignee: Imagination Technologies Limited,
Kings Langley (GB)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 1 day.

(21) Appl. No.: 14/656,376

(22) Filed: Mar. 12, 2015
(65) Prior Publication Data
US 2015/0264391 Al Sep. 17, 2015
(30) Foreign Application Priority Data
Mar. 14, 2014 (GB) .oceevevvervccnicecieenene 1404563.7
(51) Imt.CL
HO4N 19/895 (2014.01)
HO4N 19/513 (2014.01)
HO4N 19/105 (2014.01)
HO4N 19/176 (2014.01)
HO4N 19/46 (2014.01)
HO4N 19/166 (2014.01)
(52) US. CL
CPC HO4N 19/521 (2014.11); HO4N 19/105

(2014.11); HO4N 19/166 (2014.11); HO4N
19/176 (2014.11); HO4N 19/46 (2014.11);
HO4N 19/895 (2014.11)

810

812

(58) Field of Classification Search
CPC ..ccovvveriivna HO4N 19/521; HO4N 19/895
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2003/0142749 Al* 7/2003 Hong HO4N 19/51

375/240.16

FOREIGN PATENT DOCUMENTS

EP 0647919 Bl 2/2000
KR 1020040047045 A 6/2004

OTHER PUBLICATIONS

Farber et al., “Robust H.263 Compatible Video Transmission over
Wireless Channels,” Proc. PCS ’96, Mar. 1996.

(Continued)

Primary Examiner — Dave Czekaj

Assistant Examiner — Nam Pham

(74) Attorney, Agent, or Firm — Vorys, Sater, Seymour and
Pease LLP; Vincent M DeLuca

(57) ABSTRACT

Methods and encoders for tracing an error in a frame of a
video to a subsequent frame of the video. In response to
receiving an error notification message indicating an error
has occurred in an encoded frame during decode, an encoder
obtains: (a) the minimum and maximum horizontal motion
vector components for each column of blocks of the frame
immediately following the error frame; and (b) the minimum
and maximum vertical motion vector components for each
row of blocks of the frame immediately following the error
frame. A rectangular region of blocks of the frame imme-
diately following the error frame that the error is likely to
have propagated to is identified using the minimum and
maximum horizontal and vertical motion vector compo-
nents.

18 Claims, 11 Drawing Sheets

FRAME N + 2

US 9,445,117 B2

Page 2
(56) References Cited Term Memory Motion-Compensated Prediction,” IEEE Journal on
Selected Areas in Communications, vol. 18, No. 6, Jun. 2000, pp.
OTHER PUBLICATIONS 1050.

Wiegand et al., “Error-Resilient Video Transmission Using Long- * cited by examiner

U.S. Patent

Sep. 13, 2016

108 102
VIDEO
ENCODER
SOURCE

106

DATA
COMMUNICATIONS
NETWORK

FIG. 1

Sheet 1 of 11

US 9,445,117 B2

100

</JO4 </110
VIDEO
DECODER OuTPUT
MODULE

US 9,445,117 B2

Sheet 2 of 11

Sep. 13, 2016

U.S. Patent

200

204

VIDEO FRAME N

210
VIDEO FRAME N + 2

VIDEO FRAME N + 1

R R
T T .
A N R R e
T ThHhHHh
B _r:
r.;.: 2 B J..... oy .,..Wmfffr.ﬁfﬂaﬁ Ry Jﬁfﬁ?ﬁ

N

[ve]
(=]
N

FIG. 2

U.S. Patent Sep. 13,2016 Sheet 3 of 11 US 9,445,117 B2

UNENCODED UNENCODED ENCODED ENCODED ENcODED ENCODED
FRAME FRAME FRAME FRAME FRAME FRAME
N+5 N+4 N+3 N+2 N+1

AR
[\ [\ 302 [& [\ bﬁ ‘O@
ENCODER DECODER
ERROR IN FRAME N
- f .f
312
314

FIG. 3

U.S. Patent Sep. 13,2016 Sheet 4 of 11 US 9,445,117 B2

400

J

r 410
DEPENDENCY
INFORMATION
[.4 08 406 404 412
VIDEO
ENCODER
SOURCE COMMUNICATIONS DECODER I\(zUTPUT

f NETWORK ODULE

402

FIG. 4

U.S. Patent Sep. 13,2016 Sheet 5 of 11 US 9,445,117 B2

500

RECEIVE DATA FOR A FRAME

OF A VIDEO ~— 502

ENCODE FRAME DATA USING
BLOCK MOTION-COMPENSATED ko~ 504
BASED COMPRESSION

IDENTIFY MAXIMUM HORIZONTAL
MOTION OF BLOCKS IN EACH " 506
COLUMN

l

IDENTIFY MINIMUM HORIZONTAL
MOTION OF BLOCKS IN EACH k"~ 508
COLUMN

IDENTIFY MAXIMUM VERTICAL

1
MOTION OF BLOCKS IN EACH ROW ~ 510

IDENTIFY MINIMUM VERTICAL

MOTION OF BLOCKS IN EACH ROW 512

FIG. 5

U.S. Patent Sep. 13,2016 Sheet 6 of 11 US 9,445,117 B2

602

S _

FrameMV = 0,00 ©O1 @,1) (0,0 (0,0)
0,00 O @1 10 (0,0)
000 02 (1,2 (1,2) (0,0)
(0,00 (0,2) (1,00 (-2,0) (0,0)

(0,00 (0,2) (0,00 (0,0) (0,0

410
MaxMVx = [0,0,1,1,0 604

MinMvx = [0,0,-1,-2,0 ke 606

MaxMvy = [1,1,2,2,2k~ 608

MinMvVy = [0,0,0,0,0 k" 610

FIG. 6

U.S. Patent Sep. 13,2016 Sheet 7 of 11 US 9,445,117 B2

700

RECEIVE ERROR |~ 702
NOTIFICATION MESSAGE
IDENTIFY ORIGIN OF ERROR FROM
L~ 704

ERROR NOTIFICATION MESSAGE

!

TRACE ERROR TO FRAME
PRECEDING NEXT FRAME TO BE
ENCODED USING N\ 706
DEPENDENCY INFORMATION

l

MARK IDENTIFIED BLOCKS AS
UNUSABLE FOR ENCODING

N~ 708

ENCODE NEXT FRAME — 710

FIG. 7

U.S. Patent Sep. 13,2016 Sheet 8 of 11 US 9,445,117 B2

802

yd

FRAME N

804

,_A_‘_/-808

INSNSNANN . FANSSNSSNN

HFSH""""' 806
810
\{ FRamME N + 1
812 —45 .t"nnﬂimvn"nu'
yNEENENERSTE NEEENNEEN,
[/ """"ESEA
__816
[T T AN FFEEEFA 77777777
814
818
\ 5 <1
FrRamME N + 2
] A

820

1111111

FIG. 8

US 9,445,117 B2

Sheet 9 of 11

Sep. 13, 2016

U.S. Patent

FRAME N

902

920

o)
-
(o))

FRAME N + 1

W
\t
2
\

‘ﬁﬁ A ,F‘..,r iy .r‘i -,

NENAR LR

-ﬂﬁﬂﬂﬁ RN g,
--'ﬁ,l

AN% L\
R am
NIRRT

R

| Nl A
T
i

Nun

1~

\)

v\
o

FRAME N + 2

WJIL-V/--

910

912

014

916

FIG.9

U.S. Patent

Sep. 13, 2016

Sheet 10 of 11

RECEIVE ERROR NOTIFICATION

'

CONVERT FRAME ERROR MAP
TO ROW AND COLUMN ERROR
MAPS

L~~~ 1004

IDENTIFY FRAME IMMEDIATELY
FOLLOWING ERRONEOUS
FRAME AS REFERENCE FRAME

1006

IDENTIFY ROWS IN
REFERENCE FRAME LIKELY TO
HAVE BEEN AFFECTED BY
ERROR

N—""1008

l

IDENTIFY COLUMNS IN
REFERENCE FRAME LIKELY TO
HAVE BEEN
AFFECTED BY ERROR

L _— 1010

'

SET ROW AND COLUMN
ERROR MAPS TO PROPAGATED
ROW AND COLUMN ERROR
MAPS

|_—~1012

REFERENCE FRAME
IS FRAME PRECEDING NEXT
RAME TO BE ENCODED?

1014

US 9,445,117 B2

1000

IDENTIFY FRAME FOLLOWING
REFERENCE FRAME AS
REFERENCE FRAME

1016

FIG. 10

I 1018

CONVERT ROW AND
COLUMN ERROR MAPS TO
FRAME ERROR MAP

US 9,445,117 B2

Sheet 11 of 11

Sep. 13, 2016

U.S. Patent

Ll "©OI4
c0Ll
\ ThLL [ddd
((
HOSSIOD0Ud v v
onbiovs TInCON
1 NOILVOILIN HOoxyg
NI NE

I1INAO

oLl F/\ NOILYWHOAN| ONILV¥INID
AON3IANI43Q NOILYINHOSN] ,\wo/r _
ASNIANIdAQ
321A3Q 301IA3Q EOVANEILY
1ndN| ¥3sn AVIdSIq H3TIOHINGD Ol NOLLYDINNIAINOD

IINAoW WILSAS

ONICOONT NOILYYIdO
213" r\. Adon3
vZll ¢cll oclLl 9l Ll i — W
Q0L 1209
00L1

US 9,445,117 B2

1
ERROR TRACKING AND MITIGATION FOR
MOTION COMPENSATION-BASED VIDEO
COMPRESSION

BACKGROUND

Due to the large size of digital video data some form of
compression is typically performed on digital video before
it is transmitted across a network. One video compression
technique that may be used is motion compensation-based
compression which only transmits the difference between
the video frame being encoded and a reference frame.
Motion compensation compression exploits inter-frame
redundancy. In particular, often, the only difference between
sequential frames is a result of the camera moving or an
object moving within the frame. This means that most of the
information that describes one frame is the same as the
information that describes the following frame.

However, network errors may mean that the receiver is
unable to decode certain parts of an encoded video frame
(i.e. because there is an error in the received information or
because the receiver did not receive part of the encoded
video) resulting in missing data which manifests itself as a
visual artifact in the video. Since subsequent frames are
dependent on previous frames any error or visual artifact in
a particular frame propagates to subsequent frames. This has
a cascading effect which causes a growing visual artifact in
the video.

One way to mitigate the propagation of such errors or
artifacts has been to introduce an intra-coded frame (i.e. a
frame encoded using information contained only within the
frame being encoded) upon determining an error has
occurred. However, this technique does not achieve as high
a compression ratio as inter-coding techniques (i.e. coding
techniques, such as motion compensation-based compres-
sion techniques, that use information from another frame to
code a frame) since such intra-coded frames use up a large
amount of bandwidth in a non-uniform manner.

Another way to mitigate the propagation of such errors or
artifacts has been to intra-code a portion (e.g. one or more
blocks) of each frame. Different portions (e.g. blocks) of the
frame are cyclically chosen over a sequence of frames. This
technique more evenly distributes the additional data over
time. However, since the intra-coded blocks may be derived
spatially from neighboring inter-coded blocks of the same
frame the effectiveness of this technique decreases due to the
existing propagated error.

Accordingly, known techniques for mitigating error
propagation increase the data transmitted between the
encoder and decoder in either a uniform or non-uniform
manner.

The embodiments described below are not limited to
implementations which solve any or all of the disadvantages
of known video compression techniques.

SUMMARY

This Summary is provided to introduce a selection of
concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used as an aid
in determining the scope of the claimed subject matter.

Described herein are methods and encoders for tracing an
error in a frame of a video to a subsequent frame of the
video. In response to receiving an error notification message
indicating an error has occurred in an encoded frame during

10

15

20

25

30

35

40

45

50

55

60

65

2

decode, an encoder obtains: (a) the minimum and maximum
horizontal motion vector components for each column of
blocks of the frame immediately following the error frame;
and (b) the minimum and maximum vertical motion vector
components for each row of blocks of the frame immedi-
ately following the error frame. A rectangular region of
blocks of the frame immediately following the error frame
that the error is likely to have propagated to is identified
using the minimum and maximum horizontal and vertical
motion vector components.

A first aspect provides a method of tracing an error in a
frame of a video to a subsequent frame of the video, each
frame in the video being divided into a plurality of blocks
arranged in a number of rows and columns, each frame of
the video being encoded by a technique that comprises
generating motion vectors for blocks of the frame, the
method comprising: (a) receiving an error notification mes-
sage at an encoder, the error notification message compris-
ing information identifying an erroneous frame of the video
and information identifying portions of the erroneous frame
detected as having an error during decoding; (b) identifying,
at the encoder, the frame immediately following the erro-
neous frame as a reference frame; (c) obtaining, at the
encoder, minimum and maximum horizontal motion vector
components for each column of blocks of the reference
frame; (d) obtaining, at the encoder, minimum and maxi-
mum vertical motion vector components for each row of
blocks of the reference frame; and (e) identifying, at the
encoder, a rectangular region of blocks of the reference
frame that the error is likely to have propagated to from the
minimum and maximum horizontal and vertical motion
vector components for the reference frame.

A second aspect provides a method of mitigating propa-
gation of an error in a frame of a video, the error being
detected at a decoder, the method comprising: tracing the
error, at an encoder, to a frame immediately preceding a next
frame to be encoded in accordance with the first aspect;
modifying the reference frame to identify the blocks in the
identified rectangular region as being unusable for inter-
frame encoding; and encoding the next frame using the
modified reference frame.

A third aspect provides a video encoder to trace an error
in a frame of a video to a subsequent frame of the video, each
frame in the video being divided into a plurality of blocks
arranged in a number of rows and columns, each frame of
the video being encoded by a technique that comprises
generating motion vectors for blocks of the frame, the
encoder comprising: a communications interface configured
to receive an error notification message, the error notifica-
tion message comprising information identifying an errone-
ous frame and information identifying portions of the erro-
neous frame detected as having an error during decoding;
and a processor in communication with the communications
interface, the processor configured to: a. identify a frame
immediately following the erroneous frame in the video as
a reference frame; b. obtain minimum and maximum hori-
zontal motion vector components for each column of blocks
of the reference frame; c. obtain minimum and maximum
vertical motion vector components for each row of blocks of
the reference frame; and d. identify a rectangular region of
blocks of the reference frame that the error is likely to have
propagated to from the minimum and maximum horizontal
and vertical motion vector components for the reference
frame.

A fourth aspect provides a computer readable storage
medium having encoded thereon computer readable pro-
gram code for generating a video encoder of the third aspect.

US 9,445,117 B2

3

A fifth aspect provides a computer readable storage
medium having encoded thereon computer readable pro-
gram code for generating a video encoder configured to
perform the method of the first aspect.

The methods described herein may be performed by a
computer configured with software in machine readable
form stored on a tangible storage medium e.g. in the form of
a computer program comprising computer readable program
code for configuring a computer to perform the constituent
portions of described methods or in the form of a computer
program comprising computer program code means adapted
to perform all the steps of any of the methods described
herein when the program is run on a computer and where the
computer program may be embodied on a computer readable
storage medium. Examples of tangible (or non-transitory)
storage media include disks, thumb drives, memory cards
etc and do not include propagated signals. The software can
be suitable for execution on a parallel processor or a serial
processor such that the method steps may be carried out in
any suitable order, or simultaneously.

The hardware components described herein may be gen-
erated by a non-transitory computer readable storage
medium having encoded thereon computer readable pro-
gram code.

This acknowledges that firmware and software can be
separately used and valuable. It is intended to encompass
software, which runs on or controls “dumb” or standard
hardware, to carry out the desired functions. It is also
intended to encompass software which “describes” or
defines the configuration of hardware, such as HDL (hard-
ware description language) software, as is used for designing
silicon chips, or for configuring universal programmable
chips, to carry out desired functions.

The preferred features may be combined as appropriate,
as would be apparent to a skilled person, and may be
combined with any of the aspects of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention will be described, by way
of example, with reference to the following drawings, in
which:

FIG. 1 is ablock diagram of a known system for encoding
video data using block motion compensation video com-
pression;

FIG. 2 is a schematic diagram illustrating a known
method for mitigating propagation of errors in the system of
FIG. 1,

FIG. 3 is a schematic diagram illustrating an error in an
encoded frame;

FIG. 4 is a block diagram of an example system for
encoding video data using block motion compensation video
compression where dependency information is stored;

FIG. 5 is a flowchart of an example method for generating
the dependency information of FIG. 4;

FIG. 6 shows an example of the dependency information
of FIG. 4,

FIG. 7 is a flowchart of an example method for mitigating
the propagation of errors using the dependency information
of FIG. 4,

FIG. 8 is a schematic diagram illustrating an example
method for tracing an error in an erroneous frame to sub-
sequent frames using the dependency information of FIG. 4;

FIG. 9 is schematic diagram illustrating the method of
FIG. 7,

20

25

35

40

45

50

55

4

FIG. 10 is a flowchart of an example method for tracing
an error in an erroneous frame to subsequent frames using
the dependency information of FIG. 4; and

FIG. 11 is a block diagram of an exemplary computing-
based device.

Common reference numerals are used throughout the
figures to indicate similar features.

DETAILED DESCRIPTION

Embodiments of the present invention are described
below by way of example only. These examples represent
the best ways of putting the invention into practice that are
currently known to the Applicant although they are not the
only ways in which this could be achieved. The description
sets forth the functions of the example and the sequence of
steps for constructing and operating the example. However,
the same or equivalent functions and sequences may be
accomplished by different examples.

As described above, in motion compensation-based video
compression the difference between the video frame being
encoded and a reference frame is determined and only the
difference is transmitted over the network. Motion compen-
sation compression exploits the fact that, often, the only
difference between two video frames is a result of the
camera moving or an object moving. This means that most
of the information that describes one frame is the same as the
information that describes the following frame.

In block motion compensation-based compression each
frame is divided into blocks of pixels (e.g. macroblocks of
16x16 pixels in MPEG). An attempt is then made to predict
each block (i.e. target block) of a particular frame from a
block (i.e. a matching block) in another frame (i.e. imme-
diately preceding frame), referred to herein as the reference
frame. Specifically, in the encoded video data each block of
the frame being encoded may be represented by a motion
vector which indicates where the block came from (i.e. the
shift from the target block to the matching block). Each
motion vector comprises an X or horizontal component
representing movement in the horizontal direction and a y or
vertical component representing movement in the vertical
direction.

The reference frame is typically the frame of the video
immediately preceding the frame to be encoded. However, it
will be evident to a person of skill in the art that another
frame of the video may be used as the reference frame. It
will also be evident to a person of skill in the art that more
than one reference frame may be used. For example, some
blocks may be encoded using blocks of a first reference
frame and other blocks may be encoded using blocks of a
second reference frame.

Reference is now made to FIG. 1 which illustrates a
known system 100 for encoding video data using block
motion compensation video compression. The system 100
comprises an encoder 102 arranged to receive and encode
video data using a block motion compensation video com-
pression technique; a decoder 104 for receiving and decod-
ing the encoded video data; and a data communications
network 106 for transmitting the encoded video data from
the encoder 102 to the decoder 104.

The encoder 102 is a computing-based device capable of
encoding video data. The encoder 102 receives video data
from a video source 108. The video source 108 may be a
device, such as a camera, that provides live video; a device,
such as memory, that stores a pre-recorded video; or a
combination thereof.

US 9,445,117 B2

5

In response to receiving the video data from the video
source 108 the encoder 102 is arranged or configured to
encode the video data using a block motion compensation
compression technique or codec, such as H. 264. As
described above, a block motion compensation compression
technique, such as H. 264, uses blocks from another frame
(i.e. the reference frame) to encode a frame.

In particular, for each block of the frame to be encoded
(referred to as the target block) a block most closely match-
ing the block to be encoded (referred to as the matching
block) is found in a reference frame (i.e. the immediately
preceding frame). Where the block to be encoded does not
exactly match the block in the reference frame there is said
to be error residue. Once the matching block has been
identified the motion vector representing the shift from the
target frame to the matching block is determined. The
motion vector is a two-dimensional vector (i.e. it has hori-
zontal and vertical components) that describes the target
block with respect to movement of the matching block in the
reference frame.

The compression efficiency of the motion vector and error
residue together (i.e. the inter-coding technique) is then
compared against an intra-coding technique for each block
and the more efficient encoding technique is chosen for each
block. Accordingly, for each block where inter-coding is
efficient there will be a motion vector associated with it
which will be used to encode the block. Conversely, the
blocks where inter-coding is not efficient will not have a
motion vector associated with it. The encoded video data is
then sent to the decoder 104 via the data communications
network 106.

The decoder 104 is a computing-based device for decod-
ing encoded video data. The decoder 104 receives the
encoded video data from the encoder 102 via the data
communications network 106 and decodes the received
encoded video data. The decoder 104 then provides the
decoded video to a video output module 110 for display. The
video output module 110 may be any suitable device, such
as a television, computer screen, or mobile phone display,
for displaying video.

As described above, errors in the data communications
network 106 may mean that the decoder 104 is unable to
decode portions (i.e. one or more blocks) of an encoded
video frame. This may be, for example, because the decoder
did not receive part of the encoded video frame (e.g. it was
lost) or because an error occurred during transmission that
corrupted part of the encoded video frame. Any block that
the decoder 104 is unable to decode may appear as a visual
artifact in the video. Since the information the decoder
receives for a particular frame is in reference to one or more
previous frames (i.e. there is temporal dependence between
frames), any error or artifact in a particular frame will be
propagated and spread to subsequent frames.

Accordingly, methods have been developed for mitigating
the propagation of such errors in block motion compensa-
tion-based video compression systems.

Reference is now made to FIG. 2 which illustrates a
known method 200 for mitigating the propagation of errors
in a block motion compensation-based video compression
system, such as the system 100 of FIG. 1. In the method 200,
the encoder 102 divides video frame N 202 into blocks of
pixels, encodes the divided video frame using a block
motion compensation-based compression technique, such as
MPEG2, MPEG4 or H. 274, and transmits the encoded
frame over the data communications network 106. When the
encoded video frame N 202 is subsequently received and
decoded by the decoder 104, the decoder 104 may be unable

20

25

40

45

50

55

6

to decode one or more blocks 204 of the video frame N 202.
As described above, this may be because the packets con-
taining the encoded data for those blocks were lost, or there
was an error in the received encoded data for those blocks
that inhibited the decoder from being able to decode those
blocks. The blocks that are not properly decoded appear as
visual artifacts in the output video.

The subsequent video frame, video frame N+1 206 is
similarly divided into blocks of pixels and encoded using the
same block motion compensation-based compression tech-
nique as video frame N 202 by the encoder 102. When the
decoder 104 receives the encoded data for video frame N+1
206 it uses the encoded data to generate video frame N+1
206 from video frame N 202. This temporal dependence
between frames means that the error 204 in video frame N
202 is propagated and spread to video frame N+1 206
producing a larger error or visual artifact 208.

To mitigate or reduce the effect of the error on subsequent
frames the decoder 104 notifies the encoder 102 of the error
in video frame N 202. The encoder then encodes video frame
N+2 210 as an intra-coded frame. Specifically, it encodes
video frame N+2 210 using only information within that
frame. This removes the temporal dependency and thus
stops the spreading and propagation of the error, but it does
so at the cost of increasing the data sent between the encoder
102 and the decoder 104. This is because intra-coded frames
are typically not as efficiently encoded or compressed as
inter-coded frames. In addition, since an intra-coded frame
is larger than an inter-coded frame it typically takes longer
to reach the decoder which causes a delay in receiving the
next temporally-encoded frame exacerbating the problem.

Instead of implementing periodic intra-frame encoding as
described in reference to FIG. 2, other compression tech-
niques implement partial intra-frame encoding for each
frame to mitigate error propagation. While this also
increases the amount of data transmitted between the
encoder 102 and decoder 104 it does so on a regular basis
instead of periodically. Accordingly, there is a desire for a
technique to mitigate the propagation of errors or artifacts in
a video stream without significantly increasing the amount
of data transmitted between the encoder and decoder.

Embodiments described herein relate to systems and
methods for tracking and mitigating propagation of errors in
block motion compensation-based video compression with-
out significantly increasing the data transmitted between the
encoder and decoder. In particular, in the embodiments
described herein the encoder stores dependency information
for each frame that allows an error to be traced to the current
frame. Specifically, for each frame the encoder stores maxi-
mum and minimum values of the motion vector components
for each column and each row of the blocks of the frame.
When the encoder subsequently receives a message from the
decoder that an error has occurred in certain blocks in a
particular encoded frame during decoding, the encoder uses
the stored maximum and minimum values to trace the error
from the particular encoded frame to the reference frame for
the next frame to be encoded. The tracing identifies blocks
of the reference frame that are likely to have been affected
by the error identified by the decoder. The blocks of the
reference frame that have been identified as likely being
affected by the error are then marked as unusable for
compression so the next frame to be encoded will not be
encoded using any of the affected blocks of the reference
frame.

I In the example of FIG. 3, an encoder 302 has encoded
and transmitted video frames N to N+3 (304 to 310). When
the decoder 312 attempts to decode encoded frame N 304 it

US 9,445,117 B2

7

identifies an error in encoded frame N 304. In response to
detecting the error the decoder 312 sends an error notifica-
tion message 314 to the encoder 302 to notify the encoder
302 of the error in frame N 304. In response to receiving the
error notification message 314 the encoder 302 uses the
stored motion vector maximum and minimum values to
trace the error in frame N to the reference frame for the next
frame to be encoded. When the encoder 302 receives the
error notification message 314 the next frame to be encoded
is frame N+4 316. The reference frame for frame N+4 316
is frame N+3 310. Accordingly, in this example the encoder
302 uses the stored maximum and minimum values to trace
the error in frame N 304 to frame N+3 310. In particular, the
encoder 302 uses the stored maximum and minimum values
to identify blocks of frame N+3 310 that are likely to have
been affected by the error in frame N 304. The blocks of the
reference frame (frame N+3) that are identified as being
affected by the error in frame N are then marked as being
unusable for inter-frame encoding so that frame N+4 316
will not be encoded using any of the affected blocks of frame
N+3 310.

The methods and systems described herein may be used
in any application which uses an encoder and one or more
decoders concurrently. For example, the methods and sys-
tems described herein may be used in video over IP, live
video surveillance, video on demand, and live video
transcoding applications to provide an improved visual
quality experience to users.

Reference is now made to FIG. 4 which illustrates a
system 400 for tracking and mitigating the propagation of
errors or artifacts in motion compensation-based video com-
pression. The system comprises an encoder 402 arranged to
receive and encode video data and store dependency infor-
mation 410; a decoder 404 for receiving and decoding the
encoded video data; and a data communications network
406 for transmitting the encoded video data from the
encoder 402 to the decoder 404.

The encoder 402, similar to the encoder 102 of FIG. 1, is
a computing-based device capable of encoding video data.
The encoder 402 receives video data from a video source
408. The video source 408 may be a device, such as a
camera, that provides live video; a device, such as memory,
that stores a pre-recorded video; or a combination thereof.

In response to receiving the video data from the video
source 408 the encoder 402 is arranged or configured to
encode the video data using a block motion compensation-
based compression technique or codec, such as H. 264. The
encoded video data is then sent to the decoder 404 via the
data communications network 406.

The encoder 402 of FIG. 4 is further arranged or config-
ured to store dependency information 410 for each encoded
frame that explains the relationship between blocks of the
encoded frame and blocks of the reference frame(s). In
particular, the dependency information 410 describes what
blocks of the reference frame(s) were used to encode blocks
of the encoded frame. For example, if frame N is encoded
using frame N-1 (the reference frame) then the dependency
information links the blocks of frame N-1 to the blocks of
frame N.

Since the encoder 402 does not know where an error will
occur the dependency information allows an error in a
particular encoded frame to be traced or tracked (after the
fact) to one or more subsequent frames. Specifically, since
the dependency information 410 links blocks of an encoded
frame to the blocks of the reference frame (i.e. the imme-
diately preceding frame) an error in the reference frame can
be traced to the encoded frame using the dependency

10

15

20

25

30

35

40

45

50

55

60

65

8

information. For example, if the dependency information
indicates that block 1 of the reference frame was used to
encode block 2 of the next frame, if an error occurs in block
1 of the reference frame during decode then the dependency
information can be used to trace the error in block 1 to block
2 of the subsequent frame. Specifically, the dependency
information can be used to determine that the error likely
propagated to block 2 of the next frame.

While storing the motion vectors for each block of a frame
would allow the encoder to accurately trace an error in one
frame to subsequent frames, this would require storing a
large amount of information. It has been identified that
errors tend to propagate as a rectangular area. This is
because video is typically transmitted in the form of a series
of packets. Each packet typically comprises an individually
decodable slice of the video image. The slices are generally
raster-scanned sets of blocks of the video image which form
a substantially rectangular area. Loss or corruption of any
part of the packet causes visual artifacts in the shape of the
slice (which is substantially rectangular). Furthermore the
artifacts tend to propagate around this area within an area
approximated by one or more rectangular boxes. Accord-
ingly, an accurate estimate of the blocks affected by any
particular block in a reference frame can be generated by
defining a rectangular area based on the movement of blocks
in the same row and column.

Accordingly, in embodiments described herein the depen-
dency information 410 that is stored by the encoder 402 for
each frame is the maximum and minimum of the horizontal
and vertical components of the motion vectors on a row and
column basis. Specifically, the encoder 402 stores the maxi-
mum and minimum of the horizontal component of the
motion vectors for each column of blocks and the maximum
and minimum of the vertical component of the motion
vectors for each row of blocks. The maximum and minimum
values can then be used to trace an error to blocks in
subsequent frames. An example method for generating the
dependency information 410 is described with reference to
FIG. 5 and an example of dependency information 410 is
described with reference to FIG. 6.

In some cases the encoder 402 may only store the mini-
mum and maximum values for a predetermined number of
frames. The predetermined number of frames may be based
on the round-trip latency between the encoder 402 and the
decoder 404. In particular, the dependency information (i.e.
the maximum and minimum values) for a particular frame
only needs to be stored until enough time has elapsed that
the encoder 402 can presume that if the encoder 402 has not
received an error message for the particular frame the
decoder 404 has successfully received and decoded the
frame. Accordingly, the encoder 402 may be configured to
keep a rolling window of dependency information that
relates to the frames that have been encoded and sent, but not
yet successfully decoded by the decoder 404.

The decoder 404 is a computing-based device for decod-
ing encoded video data. The decoder 404 receives the
encoded video data from the encoder 402 via the data
communications network 406 and is configured or arranged
to decode the received encoded video data. The decoder 404
may provide the decoded video to a video output module
412 for display. The video output module 412 may be any
suitable device for displaying video, such as a television,
computer screen, or mobile phone display; visual rendering
hardware; any suitable device for storing video data, such as
memory; or a combination thereof.

If the decoder 404 encounters an error while decoding the
encoded video data the decoder 404 transmits an error

US 9,445,117 B2

9

notification message to the encoder 402 via the data com-
munications network 406. The notification message com-
prises information identifying the frame and the portion(s)
of that frame with an error. The notification message may be
in any suitable form. For example, in some cases the
notification message may comprise a standard macroblock
error bitmap which explicitly identifies the block(s) with
errors. In other cases, the notification message may comprise
information that identifies the column(s) and row(s) with
errors.

Upon receiving an error notification message the encoder
402 uses the information in the notification message to
identify the error block(s). The encoder 402 then uses the
stored dependency information to track or trace the error(s)
to the frame immediately preceding the next frame to be
encoded by the encoder 402. For example, if an error
occurred in frame N and frame N+5 is the next frame to be
encoded, the encoder 402 uses the stored dependency infor-
mation to trace the propagation of the error(s) from frame N
to frame N+4.

In particular, the encoder 402 uses the dependency infor-
mation (i.e. minimum and maximum horizontal and vertical
motion vector components) to identify columns and rows in
subsequent frames that the error is likely to have propagated
to. The encoder 402 then uses the column and row infor-
mation to identify one or more rectangular areas in subse-
quent frames that the error is likely to have propagated to.
Once the encoder 402 has traced the error to one or more
rectangular areas in the frame immediately preceding the
next frame to be encoded, the encoder 402 marks any blocks
of the immediately preceding frame that have been identified
as likely to have been affected by the error as unusable for
encoding purposes. Then when the next frame is encoded the
blocks likely affected by the error will not be used for
encoding. This mitigates propagation of the error.

The data communications network 406 may be any net-
work, or combination of networks, capable of enabling data
communication between the encoder 402 and the decoder
404. For example, the data communications network 406
may be a public switched telephone network (PSTN), a
mobile telephone network, a wireless data network, a wired
data network, or any combination thereof.

Although a single data communications network 406 is
shown, it will be evident to a person of skill in the art that
the data communications network 406 may comprise a
plurality of connected data communications networks or a
plurality of separate and independent data communications
networks.

Reference is now made to FIG. 5 which illustrates a flow
chart of a method 500 for generating the dependency infor-
mation 410 (i.e. minimum and maximum horizontal and
vertical motion vector components) which may be imple-
mented by the encoder 402 of FIG. 4. At step 502, the
encoder 402 receives data representing a frame of the video
(referred to herein as frame data) from the video source 408.
In response to receiving the frame data, the method 500
proceeds to step 504.

At step 504, the encoder 402 encodes the frame data using
a block motion compensation-based video compression
technique. As described above, block motion compensation-
based video compression techniques comprise attempting to
generate a motion vector for each block of the frame. As
noted above, in some cases a motion vector may not be
generated for every block of the frame. For example, it may
not be possible or efficient to generate a motion vector for
certain blocks.

10

15

20

25

30

35

40

45

50

55

60

65

10

The motion vectors may be recorded in a matrix referred
to as the FrameMV matrix. The FrameMV matrix comprises
an entry for each block in the frame. Each entry represents
the motion vector (x component and y component) for that
block. The FrameMYV entries are indexed by row (x) and
column (y) number so that FrameMV(x, y) represents the
motion vector for the block in the x” row and the y” column.
FrameMVx (x, y) represents only the x component (i.e.
horizontal component) of the motion vector for the block in
the x” row and the y” column and FrameMVy (x, y)
represents only the y component (i.e. vertical component)
for the block in the x” row and the y* column. Once the
encoder 402 has encoded the frame (including generating
the motion vectors for the frame) the method 500 proceeds
to step 506.

At step 506, the encoder 402 determines the maximum
horizontal motion of the blocks in each column. In some
cases the encoder 402 determines the maximum horizontal
motion of the blocks in each column by calculating the
maximum horizontal component (i.e. x-component) of the
motion vectors for the blocks in each column. The encoder
402 may save these maximum values in an array referred to
as the MaxMVx array. The MaxMVX array comprises an
entry for each column of blocks in the frame. Each entry
represents the maximum horizontal component of the
motion vectors for the blocks in that column. In some cases
the MaxMVx array may be generated from the FrameMVx
matrix using equation (1) where TotalBlockRows is the total
number of block rows in the frame and TotalBlockCols is the
total number of block columns in the frame.

MaxMVx(ColBIkIdx)
=MAX R or, BlkIdvs TotalBlockRowsE TAMEM Vx(Col-
BlkIdx,RowBlkIdx)

VColblockIdx=0—TotalBlockCols €8}

Once the encoder has calculated the maximum horizontal
motion vector component for each column, the method 500
proceeds to step 508.

At step 508, the encoder determines the minimum hori-
zontal motion of the blocks in each column. In some cases
the encoder determines the minimum horizontal motion of
the blocks in each column by calculating the minimum
horizontal component (i.e. x-component) of the motion
vectors for the blocks in each column. The encoder 402 may
save these minimum values in an array referred to as the
MinMVx array. The MinMVx array comprises an entry for
each column of blocks in the frame. Each entry represents
the minimum horizontal component of the motion vectors
for the blocks in that column. In some cases the MinMVx
array may be generated from the FrameMV matrix using
equation (2).

MinMVx(ColBIkIdx)
=MiNORovBlkldx=TotalBlockRowsF TAMEM Vx(Col-
BlkIdx,RowBlkIdx)

VColblockIdx=0—TotalBlockCols 2)

Once the encoder has calculated the minimum horizontal
motion vector component for each column, the method 500
proceeds to step 510.

At step 510, the encoder 402 determines the maximum
vertical motion of the blocks in each row. In some cases the
encoder 402 determines the maximum vertical motion of the
blocks in each row by calculating the maximum vertical
component (i.e. y-component) of the motion vectors for the
blocks in each row. The encoder may save these maximum
values in an array referred to as the MaxMVy array. The
MaxMVy array comprises an entry for each row of blocks in
the frame. Each entry represents the maximum vertical

US 9,445,117 B2

11

component of the motion vectors for the blocks in that row.
In some cases the MaxM Vy array may be generated from the
FrameMV matrix using equation (3).

MaxMVy(RowBIlkIdx)

MR- CoBikldr=TotalBlockColst TAMEM Vy(Col-
BlkIdx,RowBIlkIdx)

VRowblockIdx=0—+TotalBlockRows 3)

Once the encoder has calculated the maximum vertical
motion vector component for each row, the method 500
proceeds to step 512.

At step 512, the encoder 402 calculates the minimum
vertical component (i.e. y-component) of the motion vectors
for the blocks in each row. In some cases the minimum
vertical component values are saved or stored in an array
referred to as the MinMVy array. The MinMVy array com-
prises an entry for each row of blocks in the frame. Each
entry represents the minimum vertical component of the
motion vectors for the blocks in that row. In some cases the
MinMVy array may be generated from the FrameMV matrix
using equation (4).

MinMVy(RowBIkIdx)

=Ml copiidar=TotaiBlockcorst TAMEMVy(Col-
BlkIdx,RowBIkIdx)

VRowblockIdx=0—+TotalBlockRows 4

Once the encoder has calculated the minimum vertical
motion vector component for each row, the method 500
ends.

Where a particular block has been intra-frame encoded
(e.g. because intra-frame encoding was deemed to more
efficient) that block will not have a motion vector associated
with it. That particular block may be ignored or treated as
having a null motion vector when determining the maximum
and minimum horizontal and vertical components of the
motion vectors for the blocks in each row and column.

Reference is now made to FIG. 6 which illustrates an
example of the dependency information 410 that may be
generated and stored by the encoder 402 of FIG. 4 using, for
example, the method of FIG. 5. FIG. 6 illustrates a
FrameMV matrix 602 that stores the motion vectors for a
frame with twenty-five blocks divided into five rows and
five columns. Accordingly, the FrameMV matrix has
twenty-five entries, one for each block in the frame. Each
entry has two components a horizontal or x component that
represents horizontal motion of the corresponding block
with respect to the reference (i.e. previous) frame, and a
vertical or y component that represents vertical motion of
the corresponding block with respect to the reference (i.e.
previous) frame. For ease of explanation, the unit of mea-
surement of the motion vectors is blocks. Accordingly, an
x-component with a value of 1 means motion of 1 block in
the positive horizontal direction (i.e. right), and a y-compo-
nent with a value of -2 means motion of 2 blocks in the
negative vertical direction (i.e. down). However, it will be
evident to a person of skill in the art that any other suitable
unit of measurement may be used for the motion vector
components, such as pixels or sub-pixels.

As described above in reference to FIG. 5, the FrameMV
matrix 602 may be converted into one or more arrays (e.g.
MaxMVx 604, MinMVx 606, MaxMVy 608 and MinMVy
610610) which represent the maximum and minimum hori-
zontal and vertical motion vector components on a row and
column basis. In particular, as described above the MaxMVx
array 604 has an entry for each column of blocks that
represents the maximum horizontal motion vector compo-
nent for the blocks in that column; the MinMVx array 606
has an entry for each column of blocks that represents the

10

20

25

30

40

45

12

minimum horizontal motion vector component for the
blocks in that column; the MaxMVy array 608 has an entry
for each row of blocks that represents the maximum vertical
motion vector component for the blocks in that row; the
MinMVy array 610 has an entry for each row of blocks that
represents the minimum vertical motion vector component
for the blocks in that row. Together these four arrays
(MaxMVx 604, MinMVx 606, MaxMVy 608 and MinMVy
610) form the dependency information 410.

In the example shown in FIG. 6, the frame comprises five
rows of blocks and five columns of blocks thus the four
arrays (MaxMVx 604, MinMVx 606, MaxMVy 608 and
MinMVy 610) each have five entries, one for each column
or row. It will be evident to the person of skill in the art that
the dependency arrays (MaxMVx 604, MinMVx 606, Max-
MVy 608 and MinMVy 610) may have more or fewer entries
depending on the number of rows and columns of blocks in
the frame.

Reference is now made to FIG. 7 which illustrates a flow
chart of a method 700 for mitigating error propagation in a
block motion compensation-based video compression sys-
tem which may be implemented by the encoder 402 of FIG.
4. At step 702, the encoder 402 receives an error notification
message from the decoder 404. As described above, the error
notification message comprises information that indicates
the frame and the portion (i.e. blocks) of that frame with an
error. The notification message may be in any suitable form.
For example, in some cases the notification message may
comprise a standard macroblock error bitmap which explic-
itly identifies the block(s) of the frame with errors. In other
cases, the notification message may comprise information
identifying the column(s) and row(s) with errors. In
response to receiving the error notification message, the
method 700 proceeds to step 704.

At step 704, the encoder 402 analyses the error notifica-
tion message to identify the origin of the error. The origin of
the error is defined as the particular frame and portion(s) (i.e.
blocks) of that frame with an error. The frame in which the
error occurred will be referred to as the erroneous frame and
the blocks within the erroneous frame in which the error
occurred will be referred to herein as the erroneous blocks.
In response to identifying the origin of the error, the method
700 proceeds to step 706.

At step 706, the encoder 402 uses the stored dependency
information (i.e. the maximum and minimum arrays) to trace
the error from the erroneous frame to the reference frame for
the next frame to be encoded. Where the reference frame is
the frame immediately preceding the frame to be encoded
the error is traced from the erroneous frame to the frame
immediately preceding the next frame to be encoded. Spe-
cifically, the encoder 402 uses the dependency information
to identify blocks of the frame immediately preceding the
next frame to be encoded that are likely to have been
affected by the error. In other words the encoder 402 uses the
dependency information to identify the propagation of the
error from the erroneous frame to the reference frame for the
next frame to be encoded.

In some cases the encoder 402 uses the dependency
information 410 (i.e. minimum and maximum horizontal
and vertical motion vector components) to identify columns
and rows of the frame immediately following the erroneous
frame that are likely to have been affected by the error(s).
The overlap of the affected columns and rows defines a
rectangular area of blocks that are likely to have been
affected by the error (i.e. it is likely the error has propagated
to these blocks). This process is repeated for each subse-

US 9,445,117 B2

13

quent frame until the error is traced to the frame immediately
preceding the next frame to be encoded.

For example, as shown in FIG. 8, an error 802 occurs in
frame N 804. The encoder 402 uses the dependency infor-
mation (i.e. maximum and minimum vertical and horizontal
motion vector components) for frame N+1 806 to identify
columns 808 and rows 810 of frame N+1 806 that are likely
to have been affected by the error 802 (i.e. it is likely the
error has propagated to these columns and rows). The
intersection of these columns 808 and rows 810 define a
rectangular region 812 of blocks that are likely to have been
affected by the error 802.

This process is then repeated for the next frame, frame
N+2 814. In particular, the encoder 402 uses the dependency
information (i.e. maximum and minimum vertical and hori-
zontal motion vector components) for frame N+2 814 to
identify columns 816 and rows 818 of frame N+2 814 that
are likely to have been affected by the error region 812 of
frame N+1 806. The intersection of these columns 816 and
rows 818 define a rectangular region 820 of blocks that are
likely to have been affected by the error 802. This process is
then repeated for each subsequent frame (i.e. N+3, N+4 etc.)
until the error is traced to the frame immediately preceding
the next frame to be encoded.

An exemplary method for tracing the error from the
erroneous frame to the frame immediately preceding the
next frame to be encoded using the dependency information
410 will be described below with reference to FIG. 10.
Referring back to FIG. 7, once the error has been traced to
the frame immediately preceding the next frame to be
encoded, the method 700 proceeds to step 708.

At step 708, the blocks in the frame immediately preced-
ing the next frame to be encoded that were identified in step
706 as likely being affected by the error are marked or
otherwise identified as being unusable for inter-frame
encoding. For example, with reference to FIG. 8 if frame
N+3 is the next frame to be encoded then the blocks in the
rectangular region 820 of frame N+2 814 are marked as
being unusable for inter-frame encoding. Once the blocks of
the frame immediately preceding the current frame identi-
fied as likely being affected by the error are marked as being
unusable for inter-frame encoding the method 700 proceeds
to step 710.

At step 710, the next frame to be encoded is encoded
using a block motion compensated-based compression tech-
nique. Since a number of blocks of the reference frame have
been marked as being unusable for inter-frame encoding any
block in the next frame to be encoded that corresponds to (or
refers to) a block in the reference frame that has been
marked as unusable for inter-frame encoding is encoded
using other techniques. In some cases the blocks that cor-
respond (or refer to) an unusable block in the reference
frame are encoded based on the last successfully delivered
frame (i.e. the frame immediately preceding the erroneous
frame). In other cases (e.g. where the compression technique
used does not support multiple reference frames or no
reference region is available) the blocks that correspond to
(or refer to) an unusable block in the reference frame are
intra-frame encoded (i.e. encoded using only information
from the frame itself). For example, the blocks that corre-
spond to (or refer to) an unusable block in the reference
frame may be classified into contiguous runs of blocks in
raster scan order (or block encoding order) which are
encoded as independently decodable intra slices.

Reference is now made to FIG. 9 which illustrates a
method for encoding a frame wherein a portion of the
reference frame has been identified as being unusable for

10

15

20

25

30

35

40

45

50

55

60

65

14

inter-frame encoding. In particular, in the example of FIG.
9, an error 902 occurs in frame N 904. The encoder 402 uses
the dependency information (i.e. maximum and minimum
vertical and horizontal motion vector components) for frame
N+1 906 to identify columns 908 and rows 910 of frame
N+1 906 that are likely to have been affected by the error
902 (i.e. it is likely the error has propagated to these columns
and rows). The intersection of these columns 908 and rows
910 define a rectangular region 912 of blocks that are likely
to have been affected by the error (i.e. it is likely the error
has propagated to these blocks). The encoder 402 then marks
the blocks in the identified region 912 as being unusable for
encoding. Then when the encoder 402 encodes frame N+2
914, the blocks 916 of frame N+2 that correspond (or refer
to) the blocks in the identified region 912 of frame N+1 906
cannot be encoded using the blocks in the identified region
912. In some cases these blocks 916 may be encoded using
the corresponding region 918 in the last successfully deliv-
ered frame (i.e. frame N-1 920).

Reference is now made to FIG. 10 which illustrates an
exemplary method 1000 for tracing an error to subsequent
frames using the dependency information 410 (i.e. maxi-
mum and minimum motion vector components) which may
be executed by the encoder 402. At step 1002 the encoder
402 receives an error notification message that comprises
information that identifies the erroneous frame and the
portions (i.e. blocks) of the erroneous frame that had an error
during decoding.

In some cases the information identifying the portion of
the erroneous frame that had an error during decoding may
comprise a column error map and a row error map that
indicate the columns and rows, respectively, of the frame
that had an error during decode. The row and column error
maps may be implemented as arrays referred to herein as
RowErrorMap and ColErrorMap arrays respectively. The
RowErrorMap has an entry for each row of the frame. Each
entry indicates whether the corresponding row had an error
during decoding. For example RowErrorMap (x) indicates
whether the x” row had an error during decoding. Similarly,
the ColErrorMap has an entry for each column of the frame.
Each entry indicates whether the corresponding column had
an error during decoding. For example, ColErrorMap (y)
indicates whether the y* row had an error during decoding.

In other cases the information identifying the portion of
the erroneous frame that had an error during decode may
comprise a frame error map that identifies the blocks that
had an error during decode. The frame error map may be
implemented by a matrix referred to herein as an
FBFrameErrorMap matrix. The FBFrameErrorMap matrix
comprises an entry for each block in the frame. Each entry
indicates whether the corresponding block had an error
during decoding. The FBFrameErrorMap entries are
indexed by row (Xx) and column (y) number so that
FBFrameErrorMap (x, y) indicates whether there was an
error in the block in the X row and the y* column during
decode. Where the information identifying the portions of
the erroneous frame is a frame error map the method 1000
proceeds to step 1004 where the frame error map is con-
verted into row and column error maps (i.e. RowErrorMap
and ColErrorMap arrays). Where, however, the information
identifying the portions of the erroneous frame is row and
column error maps the method 1000 proceeds directly to
step 1006.

At step 1004, the frame error map (i.e. FBFrameError-
Map) is converted into row and column error maps. In some
cases converting the frame error map into row and column
error maps comprises analyzing the frame error map to

US 9,445,117 B2

15

identify rows and columns that had an error during decod-
ing. For example, the row error map (i.e. RowErrorMap
array) may be generated from the frame error map (i.e.
FBFrameErrorMap matrix) using equation (5).

RowErrorMap(¥BlkIdx)
~V ypnn B FRFrameErrorMap
(XBIKIdx, YBIkIdx)

V¥BlkIdx=0—TotalBlockRows 5)

Similarly, the column error map (i.e. ColErrorMap array)
may be generated from the frame error map (i.e.
FBFrameErrorMap matrix) using equation (6).

ColErrorMap(XBlkIdx)
Vim0 B FCoS FRFrameErrorMap
(XBIkIdx, YBIKIdx)

VXBIkIdx=0—TotalBlockCols 6)

Once the frame error map has been converted into row
and column error maps, the method 1000 proceeds to step
1006.

At step 1006, the encoder identifies the frame immedi-
ately following the erroneous frame as the reference frame.
Once the reference frame has been identified the method
1000 proceeds to step 1008.

At step 1008, the encoder 402 identifies rows in the
reference frame that are likely to have been affected by the
error using the row error map (i.e. RowErrorMap) for the
frame immediately preceding the reference frame and the
dependency information (i.e. minimum and maximum ver-
tical motion vector components (MinMVy and MaxMVy))
for the reference frame. For example, if the erroneous frame
is frame N, then the encoder 402 uses the row error map for
frame N and the dependency information for frame N+1 to
estimate the rows of frame N+1 that are affected by the
erroneous blocks in frame N. If a row has been identified as
likely being affected by the erroneous blocks then it is likely
that the error has propagated to this row.

In some cases, the information identifying rows in the
reference frame that are likely to have been affected by the
error are stored in an array referred to herein as the Pro-
pRowErrorMap array. The PropRowErrorMap array, like the
RowErrorMap array, has an entry for each row of blocks of
the frame. Each entry indicates whether the corresponding
row is likely to have been affected by the error (i.e. the error
is likely to have propagated to this row). For example
PropRowErrorMap (x) indicates whether the x” row is
likely to have been affected by the error. The PropRowEr-
rorMap array may be generated from equation (7) where the
Startldx is generated from equation (8) and the Endldx is
generated from equation (9) where BLKHEIGHT is the
height of a block in pixels or sub-pixels depending on the
units of the motion vectors and ROUNDFACTOR is a factor
that aids in calculating the worst case propagation of the
error. In some cases ROUNDFACTOR is equal to half of
BLKHEIGHT to achieve ‘ceiling’ or upper rounding func-
tionality in integer division. In other cases ROUNDFAC-
TOR may be set to zero (to achieve floor' or lower rounding
functionality). Setting ROUNDFACTOR to zero reduces the
number of addition operations that are performed, but this
reduction is made at the cost of reduced accuracy.

PropRowErrorMap{ Blkldx) = v,ﬁﬁi’sd,;f,’gfg}k 10 RowErrorMap(ldx) M
V Bikldx = 0 - ToralBlockRows
MinMVy(Blkldx) (8
Startldx(Blkldx) = Blkldx + Inl(i]
BLKHEIGHT

10

15

20

25

30

35

40

45

50

55

60

65

16

-continued

MaxMVy(Blkidx) + ROUNDFA CTOR])]
BLKHEIGHT

Endldx(Blkldx) = Blkldx + Im(

Once the rows of the reference frame that the error is
likely to have propagated to have been identified, the method
1000 proceeds to step 1010.

At step 1010, the encoder 402 identifies the columns in
the reference frame that are likely to have been affected by
the error using the column error map (i.e. ColErrorMap) for
the frame immediately preceding the reference frame and
the dependency information (i.e. minimum and maximum
horizontal motion vector components (MinMVx and Max-
MVx)) for the reference frame. For example, if the errone-
ous frame is frame N, then the encoder 402 uses the column
error map for frame N and the dependency information for
frame N+1 to estimate the columns of frame N+1 that are
likely to have been affected by the erroneous blocks in frame
N. If a column has been identified as likely being affected by
the erroneous blocks then it is likely that the error has
propagated to this column.

In some cases, information identifying columns in the
reference frame that are likely to have been affected by the
error are stored in an array referred to herein as the Prop-
ColErrorMap array. The PropColErrorMap array, like the
ColErrorMap array, has an entry for each column of blocks
of'the frame. Each entry indicates whether the corresponding
column is likely to have been affected by the error. For
example PropColErrorMap (y) indicates whether the y™”
column is likely to have been affected by the error. The
PropColErrorMap array may be generated from equation
(10) where the Startldx is generated from equation (11) and
the Endldx is generated from equation (12). BLKWIDTH is
the width of a block in pixels or sub-pixels depending on the
units of the motion vectors and ROUNDFACTOR is a factor
used to calculate the worst case propagation of the error. In
some cases ROUNDFACTOR is equal to half of BLK-
WIDTH.

v Endidx(Bikldk) (10)

PropColErrorMap(Blkldx) = V4. Z s Bikicr) ColErrorMap(ldx)

V Blkldx = 0 —» TotalBlockCols

MinMVx(Blkidx) (1n
Startldx(Blkidx) = Blkidx+ Im(i]
BLKHEIGHT
Endldx(Blkldx) = (12)
MaxMVx(Blkldx) + ROUNDFACTOR
Blkldx + Im(]
BLKWIDTH

Once the columns of the reference frame that the error is
likely to have propagated to have been identified, the method
1000 proceeds to step 1012.

At step 1012, the encoder 402 sets the RowErrorMap to
the PropRowErrorMap calculated in step 1008 and the
ColErrorMap to the PropColErrorMap calculated in step
1010. The method 1000 then proceeds to step 1014.

At step 1014, the encoder 402 determines whether the
frame immediately following the reference frame is the next
frame to be encoded by the encoder 402. If it is determined
that the frame immediately following the reference frame is
the next frame to be encoded then then method 1000
proceeds to step 1018. If, however, it is determined that the
frame immediately following the reference frame is not the
next frame to be encoded then the method proceeds to step
1016.

US 9,445,117 B2

17

At step 1016, the encoder 402 identifies the frame imme-
diately following the reference frame as the reference frame
and the method 1000 proceeds back to step 1008. Accord-
ingly the process of using the dependency information to
identify rows and columns of a frame that are likely to have
been affected by an error in the immediately preceding frame
is repeated for each frame following the erroneous frame up
to the frame immediately preceding the next frame to be
encoded. In other words the process is repeated for each
previously encoded frame following the erroneous frame

At step 1018, the encoder 402 converts the row and
column error maps (i.e. RowErrorMap and ColErrorMap)
for the reference frame to a frame error map. The frame error
mayp identifies a rectangular region of blocks of the reference
frame which the error is likely to have propagated to. The
rectangular region is defined as the intersection of the
identified columns and rows (i.e. RowErrorMap and ColEr-
rorMap).

In some cases the frame error map for the reference frame
is stored as a matrix. Such a matrix will be referred to herein
as a RefFrameErrorMap matrix. Similar to the FBFrameFEr-
rorMap matrix that may be received from the decoder 404,
the RefFrameErrorMap matrix comprises an entry for each
block in the frame. Each entry indicates whether the original
error is likely to have propagated to the corresponding block.
The RefFrameFrrorMap entries are indexed by row (x) and
column (y) number so that FBFrameErrorMap (x, y) indi-
cates whether the error is likely to have propagated to the
block in the x” row and the y* column.

In some cases the RefFrameFErrorMap array may be
generated from the row and column error maps (i.e. Row-
ErrorMap and ColErrorMap) using equation (13).

RefFrameErrorMap(XBlkIdx, YBlkIdx)=RowError-
Map(YBlkIdx)xColErrorMap(XBlkIdx)
VABIkIdx=0—TotalBlockCols

V¥BlkIdx=0—TotalBlockRows 13)

The resulting RefFrameErrorMap array defines a rectan-
gular region of blocks which are identified as likely being
affected by the original error (i.e. it is likely that the error has
propagated to these blocks). Once the row and column error
maps have been converted into a frame error map the
method 1000 ends.

An example will be used to further describe the method
1000 of FIG. 10. In this example each frame consists of
twenty-five blocks divided into five columns and five rows
where the rows and columns are number from O to 4. Frame
N+1 has the minimum and maximum horizontal and vertical
motion vector component arrays (MaxMVx, MinMVx,
MaxMVy, MinMVy) shown in equations (14) to (17). For
ease of explanation, the motion vector components are
presented in units of blocks. However, it will be evident to
a person of skill in the art that other units of measurement
may be used to represent the motion vector components. For
example, the motion vector components may be represented
in units of pixels or sub-pixels.

MaxMVx=[0,0,-1,0,0] (14)

MinMVx=[0,0,1,0,0] (15)

MaxMVy=[0,0,-1,0,0] (16)

MinMVy=[0,1,1,0,0] 17

If there is an error in the block in row 1 and column 2 of
frame N, the frame error map (FBFrameErrorMap) for frame
N will be as shown in equation (18).

10

15

20

25

30

35

40

45

50

55

60

65

18

0,0,0,0,0
0,0,1,0,0
0,0,0,0,0
0,0,0,0,0
0,0,0,0,0

(18)

FBFrameErrorMap =

Upon receiving the frame error map (FBFrameErrorMap)
of equation (18) for frame N, the encoder 402 may convert
the frame error map (FBFrameErrorMap) into the row and
column error maps (RowErrorMap and ColErrorMap) of
equations (19) and (20) for frame N using equations (5) and
(6) described above. Specifically, the encoder generates row
and column error maps indicating that there is an error in
row 1 and column 2.

RowErrorMap=[0,1,0,0,0] (19)

ColErrorMap=[0,0,1,0,0] (20)

Once the row and column error maps (RowErrorMap and
ColErrorMap) have been generated the encoder 402 uses the
row error map (RowErrorMap) for frame N and the depen-
dency information (i.e. MaxMVy, MinMVy) for frame N+1
to estimate the rows of frame N+1 that the error has
propagated to. For example, the encoder 402 may generate
the propagated row error map (ProRowErrorMap) of equa-
tion (23) using equation (7) described above. To do this the
encoder 402 first generates the start id and end id for each
row as shown in equations (21) and (22) from equations (8)
and (9). It has been assumed, for simplicity, that the block
size is 1 and the rounding factor is zero. As can be seen from
equation (23) it is estimated that the error is propagated to
row 1 and row 2.

StartIdx=[0,1,1,3,4] (2D

EndIdx=[0,2,3,3,4] (22)

PropRowErrorMap=[0,1,1,0,0] (23)

Once the propagated row error map has been generated
the encoder uses the column error map (ColErrorMap) for
frame N and the dependency information (i.e. MaxMVx,
MinMVx.) for frame N+1 to estimate the columns of frame
N+1 that the error has propagated to. For example, the
encoder 402 may generate the propagated column error map
(PropColErrorMap) of equation (26) using equation (10)
described above. To do this the encoder 402 first generates
the start id and end id for each column as shown in equations
(24) and (25) from equations (11) and (12). For simplicity,
it has been assumed that the block size is 1 and the rounding
factor is zero. As can be seen from equation (26) it is
estimated that the error is propagated to column 1 and
column 2.

StartIdx=[0,1,1,3,4] (24
EndIdx=[0,1,3,3,4] (25)
PropColErrorMap=[0,0,1,0,0] (26)

Once the propagated column error map has been gener-
ated the row and column error maps (RowErrorMap and
ColErrorMap) are set to the propagated row and column
error maps (PropRowErrorMap and PropColErrorMap).

Assuming frame N+1 is the frame preceding the next
frame to be encoded, once the propagated row and column
error maps have been set to the propagated row and column
error maps, the row and column error maps are converted to

US 9,445,117 B2

19

the reference frame error map of equation (27) using equa-
tion (13) described above to identify the blocks of frame
N+1 that are likely to have been affected by the error in
frame N. As can be seen from equation (27) it is estimated
that the error will be propagated to a rectangular region of
frame N+1 including the blocks at row 1, column 2; and row
2, column 2.

0,0,0,0,0
0,0,1,0,0
0,0,1,0,0
0,0,0,0,0
0,0,0,0,0

@n

RefFrameErrorMap =

Although the methods and systems have been described in
reference to encoders that implement fixed size block
motion compensation-based compression techniques it will
be evident to a person of skill in the art that the methods and
system described herein may also be used with encoders that
implement a variable size block motion compensation-based
compression technique. As described above, in a fixed size
block motion compensation-based compression technique
the frames are divided into a number of equal-sized blocks
of pixels (e.g. macroblocks of 16x16 pixels). Each block is
predicted from a block of equal size in the reference frame.

In a variable size block motion compensation-based com-
pression technique the encoder may dynamically select the
size of the blocks and each block does not have to be the
same size. For example, the encoder may be able to select
blocks of size 8x8 pixels to 64x64 pixels. In cases where the
block size is variable, the encoder may be configured to store
the dependency information at the minimum block size
used. For example, if an encoder has the ability to select
block sizes between 8x8 pixels and 64x64 pixels then the
motion vector information is stored and analyzed at an 8x8
pixel level. Accordingly, if a motion vector is selected for a
block larger than 8x8, the encoder replicates the motion
vector to represent the larger block. For example, if a motion
vector is selected for a block of size 32x32 pixels, the
encoder may replicate the motion vector to represent sixteen
8x8 pixel blocks. The encoder then analyzes the 8x8 pixel
representation of the motion vectors to generate the depen-
dency information.

Reference is now made to FIG. 11 which illustrates
various components of an exemplary computing-based
device 1100 which may be implemented as any form of a
computing and/or electronic device, and in which embodi-
ments of the encoder 402 of FIG. 4 may be implemented.

The computing-based device 1100 comprises one or more
processors 1102 which may be microprocessors, controllers
or any other suitable type of processors for processing
computer executable instructions to control the operation of
the device. In some examples, for example where a system
on a chip architecture is used, the processors 1102 may
include one or more fixed function blocks (also referred to
as accelerators) which implement a part of the methods
described above in hardware (rather than software or firm-
ware). Platform software comprising an operating system
1104 or any other suitable platform software may be pro-
vided at the computing-based device to enable application
software to be executed on the device. For example, the
computing-based device 1100 may comprise an encoding
module 1106 comprising code to encode frames of a video
using a block motion compensation-based compression
technique; a dependency information generating module

10

15

25

30

35

40

45

55

20

1108 comprising code for generating dependency informa-
tion 1110 for each encoded frame (e.g. code to execute
method 500 of FIG. 5); an error tracing module 1112
comprising code to trace an error in one frame to a subse-
quent frame using the dependency information 1110 (e.g.
code to execute method 1000 of FIG. 10); and an error
mitigation module 1114 comprising code for mitigating
propagation of an error using the dependency information
1110 (e.g. code to execute method 700 of FIG. 7).

The computing device 1100 also comprises a communi-
cation interface 1116 which may be used to transmit the
encoded frames to the decoder 404 and/or receive error
notification messages from the decoder 404.

The computer executable instructions may be provided
using any computer-readable media that is accessible by
computing based device 1100. Computer-readable media
may include, for example, computer storage media such as
memory 1118 and communications media. Computer stor-
age media, such as memory 1118 includes volatile and
non-volatile, removable and non-removable media imple-
mented in any method or technology for storage of infor-
mation such as computer readable instructions, data struc-
tures, program modules or other data. Computer storage
media includes, but is not limited to, RAM, ROM, EPROM,
EEPROM, flash memory or other memory technology, CD-
ROM, digital versatile disks (DVD) or other optical storage,
magnetic cassettes, magnetic tape, magnetic disk storage or
other magnetic storage devices, or any other non-transmis-
sion medium that can be used to store information for access
by a computing device. In contrast, communication media
may embody computer readable instructions, data struc-
tures, program modules, or other data in a modulated data
signal, such as a carrier wave, or other transport mechanism.
As defined herein, computer storage media does not include
communication media. Although the computer storage
media (memory 1118) is shown within the computing-based
device 1100 it will be appreciated that the storage may be
distributed or located remotely and accessed via a network
or other communication link (e.g. using the communication
interface 1116).

The computing-based device 1100 may also comprise an
input/output controller 1120 arranged to output display
information to a display device 1122 which may be separate
from or integral to the computing-based device 1100. The
display information may provide a graphical user interface.
The input/output controller 1120 may also be arranged to
receive and process input from one or more devices, such as
a user input device 1124 (e.g. a mouse or a keyboard). In an
embodiment the display device 1122 may also act as the user
input device 1124 if it is a touch sensitive display device.
The input/output controller 1120 may also output data to
devices other than the display device, e.g. a locally con-
nected printing device (not shown in FIG. 11).

The term ‘processor’ and ‘computer’ are used herein to
refer to any device, or portion thereof, with processing
capability such that it can execute instructions. The term
‘processor’ may, for example, include central processing
units (CPUs), graphics processing units (GPUs or VPUs),
physics processing units (PPUs), radio processing units
(RPUs), digital signal processors (DSPs), general purpose
processors (e.g. a general purpose GPU), microprocessors,
any processing unit which is designed to accelerate tasks
outside of a CPU, etc. Those skilled in the art will realize
that such processing capabilities are incorporated into many
different devices and therefore the term ‘computer’ includes

US 9,445,117 B2

21

set top boxes, media players, digital radios, PCs, servers,
mobile telephones, personal digital assistants and many
other devices.

Those skilled in the art will realize that storage devices
utilized to store program instructions can be distributed
across a network. For example, a remote computer may store
an example of the process described as software. A local or
terminal computer may access the remote computer and
download a part or all of the software to run the program.
Alternatively, the local computer may download pieces of
the software as needed, or execute some software instruc-
tions at the local terminal and some at the remote computer
(or computer network). Those skilled in the art will also
realize that by utilizing conventional techniques known to
those skilled in the art that all, or a portion of the software
instructions may be carried out by a dedicated circuit, such
as a DSP, programmable logic array, or the like.

Memories storing machine executable data for use in
implementing disclosed aspects can be non-transitory
media. Non-transitory media can be volatile or non-volatile.
Examples of volatile non-transitory media include semicon-
ductor-based memory, such as SRAM or DRAM. Examples
of technologies that can be used to implement non-volatile
memory include optical and magnetic memory technologies,
flash memory, phase change memory, resistive RAM.

A particular reference to “logic” refers to structure that
performs a function or functions. An example of logic
includes circuitry that is arranged to perform those function
(s). For example, such circuitry may include transistors
and/or other hardware elements available in a manufacturing
process. Such transistors and/or other elements may be used
to form circuitry or structures that implement and/or contain
memory, such as registers, flip flops, or latches, logical
operators, such as Boolean operations, mathematical opera-
tors, such as adders, multipliers, or shifters, and intercon-
nect, by way of example. Such elements may be provided as
custom circuits or standard cell libraries, macros, or at other
levels of abstraction. Such elements may be interconnected
in a specific arrangement. Logic may include circuitry that
is fixed function and circuitry can be programmed to per-
form a function or functions; such programming may be
provided from a firmware or software update or control
mechanism. Logic identified to perform one function may
also include logic that implements a constituent function or
sub-process. In an example, hardware logic has circuitry that
implements a fixed function operation, or operations, state
machine or process.

Any range or device value given herein may be extended
or altered without losing the effect sought, as will be
apparent to the skilled person.

It will be understood that the benefits and advantages
described above may relate to one embodiment or may relate
to several embodiments. The embodiments are not limited to
those that solve any or all of the stated problems or those that
have any or all of the stated benefits and advantages.

Any reference to an item refers to one or more of those
items. The term ‘comprising’ is used herein to mean includ-
ing the method blocks or elements identified, but that such
blocks or elements do not comprise an exclusive list and an
apparatus may contain additional blocks or elements and a
method may contain additional operations or elements.
Furthermore, the blocks, elements and operations are them-
selves not impliedly closed.

The steps of the methods described herein may be carried
out in any suitable order, or simultaneously where appro-
priate. The arrows between boxes in the figures show one
example sequence of method steps but are not intended to

25

30

40

45

50

55

22

exclude other sequences or the performance of multiple
steps in parallel. Additionally, individual blocks may be
deleted from any of the methods without departing from the
spirit and scope of the subject matter described herein.
Aspects of any of the examples described above may be
combined with aspects of any of the other examples
described to form further examples without losing the effect
sought. Where elements of the figures are shown connected
by arrows, it will be appreciated that these arrows show just
one example flow of communications (including data and
control messages) between elements. The flow between
elements may be in either direction or in both directions.

It will be understood that the above description of a

preferred embodiment is given by way of example only and
that various modifications may be made by those skilled in
the art. Although various embodiments have been described
above with a certain degree of particularity, or with refer-
ence to one or more individual embodiments, those skilled
in the art could make numerous alterations to the disclosed
embodiments without departing from the spirit or scope of
this invention.

The invention claimed is:

1. A method of tracing an error in a frame of a video to

a subsequent frame of the video, each frame in the video
being divided into a plurality of blocks arranged in a number
of rows and columns, each frame of the video being encoded
by a technique that comprises generating motion vectors for
blocks of the frame, the method comprising:

(a) receiving an error notification message at an encoder,
the error notification message comprising information
identifying an erroneous frame of the video and infor-
mation identifying portions of the erroneous frame
detected as having an error during decoding;

(b) identifying, at the encoder, the frame immediately
following the erroneous frame as a reference frame;

(c) obtaining, at the encoder, minimum and maximum
horizontal motion vector components for each column
of blocks of the reference frame;

(d) obtaining, at the encoder, minimum and maximum
vertical motion vector components for each row of
blocks of the reference frame; and

(e) identifying, at the encoder, a rectangular region of
blocks of the reference frame that the error is likely to
have propagated to from the minimum and maximum
horizontal and vertical motion vector components for
the reference frame;

wherein identifying the rectangular region of the refer-
ence frame comprises:

identifying, at the encoder, rows of the reference frame
that the error is likely to have propagated to from the
maximum and minimum vertical motion vector com-
ponents for the reference frame; and

identifying, at the encoder, columns of the reference
frame that the error is likely to have propagated to from
the maximum and minimum horizontal motion vector
components for the reference frame; wherein the rect-
angular region of the reference frame is defined as the
intersection of the identified rows and columns.

2. The method of claim 1, further comprising:

() determining, at the encoder, whether the frame imme-
diately following the reference frame is a next frame to
be encoded by the encoder; and

(g) in response to determining that the frame immediately
following the reference frame is not the next frame to
be encoded by the encoder, identifying the frame
immediately following the reference frame as the ref-
erence frame and repeating (c) to (g).

US 9,445,117 B2

23

3. The method of claim 1, wherein the information
identifying the portions of the erroneous frame detected as
having an error during decoding comprises a frame error
map identifying the blocks of the erroneous frame detected
as having an error during decoding.

4. The method of claim 3, wherein identifying the rect-
angular region of the reference frame comprises converting
the frame error map to a row error map identifying the rows
of the erroneous frame detected as having an error during
decoding and a column error map identifying the columns of
the erroneous frame detected as having an error during
decoding.

5. The method of claim 1, wherein the information
identifying the portions of the erroneous frame detected as
having an error during decoding comprises a row error map
identifying the rows of the erroneous frame detected as
having an error during decoding and a column error map
identifying the columns of the erroneous frame detected as
having an error during decoding.

6. The method of claim 5, wherein:

the rows of the reference frame that the error is likely to

have propagated to are identified from the row error
map for a previous frame and the maximum and
minimum vertical motion vector components for the
reference frame, the previous frame being the frame
immediately preceding the reference frame in the
video; and the columns of the reference frame that the
error is likely to have propagated to are identified from
the column map for the previous frame and the maxi-
mum and minimum horizontal motion vector compo-
nents for the reference frame.

7. The method of claim 6, wherein the rows of the
reference frame that the error is likely to have propagated to
are identified using the following formulas:

Endidx(Blkldx)
PropRowErrorMap(Blkldx) = RowErrorMap(ldx)
Idx=Starildx(Blildx)

¥ Blkldx = 0 — TotalBlockRows

MinMVy(Blkidx)
Startldx(Blkidx) = Blkldx+ Im(i]

BLKHEIGHT
MaxMVy(Blkidx) + ROUNDFA CTOR]
BLKHEIGHT

Endldx(Blkldx) = Blkddx + Im(

where PropRowErrorMap is an array having an entry for
each row of the reference frame, each entry indicating
whether the error is likely to have propagated to the
corresponding row, RowErrorMap is the row error map
for the previous frame, MinMVy is the minimum
vertical motion vector components for the reference
frame, MaxMvy is the maximum vertical motional
vector components for the reference frame, TotalBlock-
Rows is the number of rows of blocks in the reference
frame, BLKHEIGHT is the height of the blocks and
ROUNDFACTOR is a rounding factor.
8. The method of claim 6, wherein the columns of the
reference frame that the error is likely to have propagated to
are identified using the following formulas:

Endldx(Blkidx)
ColErrorMap(ldx)

PropColErrorMap(Blkldx) =
Idx=Startide(Blkld)

V Blkldx = 0 — TotalBlockCols

5

10

15

25

30

35

40

45

50

55

60

-continued
MinMVx(Blkidx)
Startldx(Blkidx) = Blkldx+ Im(i]
BLKHEIGHT
MaxMVx(Blkidx) + ROUNDFACTOR
Endldx(Blkldx) = Blkldx + Im(]
BLKWIDTH

where PropColErrorMap is an array having an entry for
each column of the reference frame, each entry indi-
cating whether the error is likely to have propagated to
the corresponding row, ColErrorMap is the column
error map for the previous frame, MinMVx is the
minimum horizontal motion vector components for the
reference frame, MaxMvx is the maximum horizontal
motional vector components for the reference frame,
TotalBlockCols is the number of columns of blocks in
the subsequent frame, BLKWIDTH is the width of the
blocks in the reference frame and ROUNDFACTOR is
a rounding factor.

9. The method of claim 1, further comprising:

modifying the reference frame to identify the blocks in the
identified rectangular region as being unusable for
inter-frame encoding; and

encoding the next frame using the modified reference
frame.

10. The method of claim 9, wherein encoding the next
frame using the modified reference frame comprises intra-
frame encoding each block of the next frame that references
a block in the modified reference frame identified as being
unusable for inter-frame encoding.

11. The method of claim 9, wherein encoding the next
frame using the modified reference frame comprises encod-
ing each block of the next frame that references a block in
the modified reference frame identified as being unusable for
inter-frame encoding using information in the frame imme-
diately preceding the erroneous frame.

12. A video encoder to trace an error in a frame of a video
to a subsequent frame of the video, each frame in the video
being divided into a plurality of blocks arranged in a number
of rows and columns, each frame of the video being encoded
by a technique that comprises generating motion vectors for
blocks of the frame, the encoder comprising:

a communications interface configured to receive an error
notification message, the error notification message
comprising information identifying an erroneous frame
and information identifying portions of the erroneous
frame detected as having an error during decoding; and

a processor in communication with the communications
interface, the processor configured to:

a. identity a frame immediately following the erroneous
frame in the video as a reference frame;

b. obtain minimum and maximum horizontal motion
vector components for each column of blocks of the
reference frame;

c. obtain minimum and maximum vertical motion vector
components for each row of blocks of the reference
frame; and

d. identitfy a rectangular region of blocks of the reference
frame that the error is likely to have propagated to from
the minimum and maximum horizontal and vertical
motion vector components for the reference frame;

wherein identifying the rectangular region of blocks of the
reference frame comprises:

identifying rows of the reference frame that the error is
likely to have propagated to from the maximum and
minimum vertical motion vector components for the
reference frame; and

US 9,445,117 B2

25

identifying columns of the reference frame that the error
is likely to have propagated to using the maximum and
minimum horizontal motion vector components for the
reference frame;

wherein the rectangular region of the reference frame is
defined as the intersection of the identified rows and
columns.

13. The video encoder of claim 12, wherein the processor

is further configured to:

e. determine whether the frame immediately following the
reference frame in the video is a next frame to be
encoded by the video encoder; and

f. in response to determining that the frame immediately
following the reference frame is not the next frame to
be encoded by the video encoder, identify the frame
immediately following the reference frame as the ref-
erence frame and repeat b to f.

14. The video encoder of claim 12, wherein the processor

is further configured to:

modify the reference frame to identify the blocks in the
identified rectangular region as being unusable for
inter-frame encoding; and

encode a next frame using the modified reference frame.

15. The video encoder of claim 14, wherein encoding the
next frame using the modified reference frame comprises
intra-frame encoding each block of the next frame that
references a block in the modified reference frame identified
as being unusable for inter-frame encoding.

16. The video encoder of claim 14, wherein encoding the
next frame using the modified reference frame comprises
encoding each block of the next frame that references a
block in the modified reference frame identified as being
unusable for inter-frame encoding using information in the
frame immediately preceding the erroneous frame.

17. A non-transitory computer readable storage medium
having stored thereon computer readable instructions that,
when executed at a computer system for generating a

15

20

25

30

35

26

representation of a digital circuit from definitions of circuit
elements and data defining rules for combining those circuit
elements, cause the computer system to generate a video
encoder as set forth in claim 12.

18. A non-transitory computer readable storage medium
having stored thereon computer executable program code
that when executed causes at least one processor to:

(a) receive an error notification message, the error noti-
fication message comprising information identifying an
erroneous frame of the video and information identi-
fying portions of the erroneous frame detected as
having an error during decoding;

(b) identify the frame immediately following the errone-
ous frame as a reference frame;

(c) obtain minimum and maximum horizontal motion
vector components for each column of blocks of the
reference frame;

(d) obtain minimum and maximum vertical motion vector
components for each row of blocks of the reference
frame; and

(e) identify a rectangular region of blocks of the reference
frame that the error is likely to have propagated to from
the minimum and maximum horizontal and vertical
motion vector components for the reference frame;

wherein identifying the rectangular region of the refer-
ence frame comprises:

identifying, at the encoder, rows of the reference frame
that the error is likely to have propagated to from the
maximum and minimum vertical motion vector com-
ponents for the reference frame; and

identifying, at the encoder, columns of the reference
frame that the error is likely to have propagated to from
the maximum and minimum horizontal motion vector
components for the reference frame; wherein the rect-
angular region of the reference frame is defined as the
intersection of the identified rows and columns.

#* #* #* #* #*

